跳转至

Vivisecting Mobility Management in 5G Cellular Networks

Danger

这篇论文笔者读的非常走马观花,原因是:

我目前在寻找地面网络相关的移动性管理代码,这篇论文的代码开源了

因此对笔者而言,这篇文章的中心在 Prognos框架设计github 开源代码

ABSTRACT

With 5G’s support for diverse radio bands and different deployment modes, e.g., standalone (SA) vs. non-standalone (NSA), mobility management - especially the handover process - becomes far more complex. Measurement studies have shown that frequent handovers cause wild fluctuations in 5G throughput, and worst, service out- ages. Through a cross-country (6,200 km+) driving trip, we conduct in-depth measurements to study the current 5G mobility manage- ment practices adopted by three major U.S. carriers. Using this rich dataset, we carry out a systematic analysis to uncover the handover mechanisms employed by 5G carriers, and compare them along several dimensions such as (4G vs. 5G) radio technologies, radio (low-, mid- & high-)bands, and deployment (SA vs. NSA) modes. We further quantify the impact of mobility on application performance, power consumption, and signaling overheads. We identify key chal- lenges facing today’s NSA 5G deployments which result in unneces- sary handovers and reduced coverage. Finally, we design a holistic handover prediction system Prognos and demonstrate its ability to improve QoE for two 5G applications 16K panoramic VoD and real- time volumetric video streaming. We have released the artifacts of our study at https://github.com/SIGCOMM22-5GMobility/artifact.

随着5G支持多样化的无线频段和不同的部署模式(例如独立(SA)与非独立(NSA)),移动性管理——尤其是切换过程——变得更加复杂。测量研究表明,频繁的切换会导致5G吞吐量出现剧烈波动,甚至导致服务中断。通过一次跨国(超过6,200公里)的驾驶测试,我们对三家主要的美国运营商的当前5G移动性管理实践进行了深入的测量。利用这些丰富的数据集,我们进行了系统性的分析,以揭示5G运营商所采用的切换机制,并在多个维度上进行比较,包括(4G与5G)无线技术、无线频段(低、中、高频段)以及部署模式(SA与NSA)。我们进一步量化了移动性对应用程序性能、功耗和信令开销的影响。我们确定了当前NSA 5G部署面临的主要挑战,这些挑战导致了不必要的切换和覆盖范围的减少。最后,我们设计了一个整体的切换预测系统Prognos,并展示了它能够提高两个5G应用程序的服务质量:16K全景视频点播和实时体积视频流媒体。我们已在 https://github.com/SIGCOMM22-5GMobility/artifact 发布了本研究的相关文档。

Note

现象: Mobility Management 的频繁切换会导致5G吞吐量出现大量波动

分析:

  1. 现有的切换机制
  2. 量化了移动性对各项指标的影响

亮点:

给出了一个切换预测系统Prognos, 据此可以显著提升QoS